Evaluation of recombinant Leishmania polyprotein plus glucopyranosyl lipid A stable emulsion vaccines against sand fly-transmitted Leishmania major in C57BL/6 mice.
نویسندگان
چکیده
Numerous experimental Leishmania vaccines have been developed to prevent the visceral and cutaneous forms of Leishmaniasis, which occur after exposure to the bite of an infected sand fly, yet only one is under evaluation in humans. KSAC and L110f, recombinant Leishmania polyproteins delivered in a stable emulsion (SE) with the TLR4 agonists monophosphoryl lipid A or glucopyranosyl lipid A (GLA) have shown protection in animal models. KSAC+GLA-SE protected against cutaneous disease following sand fly transmission of Leishmania major in susceptible BALB/c mice. Similar polyprotein adjuvant combinations are the vaccine candidates most likely to see clinical evaluation. We assessed immunity generated by KSAC or L110f vaccination with GLA-SE following challenge with L. major by needle or infected sand fly bite in resistant C57BL/6 mice. Polyprotein-vaccinated mice had a 60-fold increase in CD4(+)IFN-γ(+) T cell numbers versus control animals at 2 wk post-needle inoculation of L. major, and this correlated with a 100-fold reduction in parasite load. Immunity did not, however, reach levels observed in mice with a healed primary infection. Following challenge by infected sand fly bite, polyprotein-vaccinated animals had comparable parasite loads, greater numbers of neutrophils at the challenge site, and reduced CD4(+)IFN-γ(+)/IL-17(+) ratios versus nonvaccinated controls. In contrast, healed animals had significantly reduced parasite loads and higher CD4(+)IFN-γ(+)/IL-17(+) ratios. These observations demonstrate that vaccine-induced protection against needle challenge does not necessarily translate to protection following challenge by infected sand fly bite.
منابع مشابه
KSAC, a Defined Leishmania Antigen, plus Adjuvant Protects against the Virulence of L. major Transmitted by Its Natural Vector Phlebotomus duboscqi
BACKGROUND Recombinant KSAC and L110f are promising Leishmania vaccine candidates. Both antigens formulated in stable emulsions (SE) with the natural TLR4 agonist MPL® and L110f with the synthetic TLR4 agonist GLA in SE protected BALB/c mice against L. major infection following needle challenge. Considering the virulence of vector-transmitted Leishmania infections, we vaccinated BALB/c mice wit...
متن کاملSand fly saliva: toward a vaccine against leishmaniases
Leishmaniases are a group of sand fly-borne diseases caused by protozoan parasites from species of Leishmania genus. These diseases are reported in about 100 countries with a prevalence of 12 million people infected and incidence of 2 million people per year, putting approximately 350 million people at risk of the infections. Leishmaniases are endemic and are considered as important public heal...
متن کاملImmunity to Sand Fly Salivary Protein LJM11 Modulates Host Response to Vector-Transmitted Leishmania Conferring Ulcer-Free Protection
Leishmania vaccines that protect against needle challenge fail against the potency of a Leishmania-infected sand fly transmission. Here, we demonstrate that intradermal immunization of mice with 500 ng of the sand fly salivary recombinant protein LJM11 (rLJM11) from Lutzomyia longipalpis, in the absence of adjuvant, induces long-lasting immunity that results in ulcer-free protection against Lei...
متن کاملEnhanced Protective Efficacy of Nonpathogenic Recombinant Leishmania tarentolae Expressing Cysteine Proteinases Combined with a Sand Fly Salivary Antigen
BACKGROUND Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishman...
متن کاملVector Transmission of Leishmania Abrogates Vaccine-Induced Protective Immunity
Numerous experimental vaccines have been developed to protect against the cutaneous and visceral forms of leishmaniasis caused by infection with the obligate intracellular protozoan Leishmania, but a human vaccine still does not exist. Remarkably, the efficacy of anti-Leishmania vaccines has never been fully evaluated under experimental conditions following natural vector transmission by infect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 189 10 شماره
صفحات -
تاریخ انتشار 2012